Bücher online kostenlos Kostenlos Online Lesen
Kosmologie für Fußgänger

Kosmologie für Fußgänger

Titel: Kosmologie für Fußgänger
Autoren: H Lesch
Vom Netzwerk:
Polarregionen, die Gebiete des ewigen Eises mit 50 Grad unter dem Gefrierpunkt. Selbst dort hat sich Lebendiges angesiedelt. Auf die Spitze aber treiben es die Organismen tief im Meer, in der unmittelbaren Nachbarschaft von Vulkanschloten, den so genannten »Black Smokers«, aus denen etliche hundert Grad heißes Material und Gas austreten. Die Einzeller dort leben ohne Licht und Sauerstoff. Das Leben ist überall auf unserer Erdkugel. Möglicherweise verdampft sie sogar Bakterien, die aus den höchsten Schichten der Atmosphäre in den Weltraum verschwinden – wer weiß?
    Was wissen wir denn vom Boden, auf dem wir stehen, vom Wasser, das wir trinken, von der Luft, die wir atmen? Woher kommen die Bestandteile des Planeten? Wie begann er denn, unser Planet? War er denn schon immer so? Nein, er war nicht immer so! Er war vielmehr – also, eigentlich war er … Ach was, bevor wir uns hier zu kurz fassen, erzählen wir lieber die ganze Geschichte.

Die Geburt der Erde
    Wie ist die Erde entstanden? Sie entstand zusammen mit dem Sonnensystem. Was können wir darüber »erzählen«?
    Nach dem derzeitigen Stand der Forschung begann die Geschichte der Erde mit einer gewaltigen Explosion eines massereichen Sterns, einer Supernova. Woher man das weiß? Vom Studium der Meteoriten, die als Überreste bei der Entstehung des Sonnensystems übrig blieben. Eine große Bedeutung erhält hierbei die Untersuchung von Isotopen. Von was? Von Isotopen. Also gut, ab in die Kernphysik. Will man nämlich verstehen, was sich aus Steinen ablesen lässt, muss man wissen, wie Atomkerne aufgebaut sind und wie sie zerfallen.
    Jedes Atom besteht aus einem Atomkern mit positiver elektrischer Ladung und negativ geladenen Elektronen, die den Kern umkreisen. Jedes chemische Element – zum Beispiel Sauerstoff, Kohlenstoff, Stickstoff, Eisen usw. – verfügt über eine bestimmte Anzahl von Elektronen. Da Atome elektrisch neutral sind, hat der Atomkern selbst eine positive Ladung, die der Summe der negativen Ladungen aller Elektronen im Atom entspricht. Der winzige Atomkern seinerseits besteht aus positiv geladenen Protonen und Neutronen ohne elektrische Ladung. Wäre das Münchener Olympiastadion das Atom, in dem die Elektronen herumsausen, dann wäre der Atomkern ein Reiskorn am Anstoßpunkt im Mittelkreis – so ein Atom ist also ziemlich leer.
    Zurück zu den Elementen: Jedes Element besitzt eine genau festgelegte Zahl an Elektronen und Protonen. So hat Sauerstoff acht Elektronen in Umlaufbahnen und acht Protonen im Kern. Normalerweise sind auch acht Neutronen im Kern, die dem Atom zwar ein höheres Gewicht geben, aber an der elektrischen Ladung des Kerns nichts ändern. Ab und zu aber gibt es auch Sauerstoffkerne mit neun oder zehn Neutronen. Diese Abarten von chemisch völlig normal reagierendem Sauerstoff nennt man Isotope. Die Isotope von Elementen unterscheiden sich nur durch das Gesamtgewicht, nicht durch ihre chemischen Eigenschaften. Normaler Sauerstoff wird mit dem Symbol 16 O gekennzeichnet, die schwereren Isotope sind 17 O und 18 O.
    Im Allgemeinen würde man auf 2600 16 O-Atome je ein Atom 17 O und fünf Atome 18 O finden. Bei der Untersuchung von Meteoriten dagegen, bei denen man davon ausgeht, dass sie sich seit der Entstehung des Sonnensystems im Weltraum befunden haben, stellte sich heraus, dass kleine Metalleinschlüsse im Meteorit reines 16 O enthielten, also kleine seltenen Isotope. Für dieses Ergebnis gibt es keine chemische Erklärung, weil, wie gesagt, alle Isotope das gleiche chemische Verhalten aufweisen. Erklären lässt sich das nur durch die Vorstellung, dass das 16 O seit der Entstehung des Sonnensystems in dem Meteoriten enthalten war. Nur in einer Supernova-Explosion bildet sich reines 16 O ohne die seltenen Isotope.
    Da in unserer Milchstraße etwa alle 30 Jahre eine Supernova explodiert, ist das zunächst keine Überraschung; irgendein großer Stern, der irgendwann explodierte, war die Heimat des Meteoritenmaterials. Wir kennen zwar nicht den Stern, der für den Meteoritenstoff verantwortlich war, denn der Stern hinterlässt, wenn überhaupt, nur einen sehr kleinen, ungefähr zehn Kilometer großen Überrest, der nur für einige Millionen Jahre noch beobachtbar ist: einen so genannten Neutronenstern. Davon an anderer Stelle mehr. Aber wir wissen, wie lange vor der Entstehung des Sonnensystems dieser Stern explodiert sein muss: nur einige hunderttausend Jahre!
    Woher wir das wissen? Ebenfalls von Isotopen, dem
Vom Netzwerk:

Weitere Kostenlose Bücher