Bücher online kostenlos Kostenlos Online Lesen
Beck Wissen - Materie - Von der Urmateria zum Leben

Beck Wissen - Materie - Von der Urmateria zum Leben

Titel: Beck Wissen - Materie - Von der Urmateria zum Leben
Autoren: Klaus Mainzer
Vom Netzwerk:
bestimmtem Wasservolumen und in einer bestimmten Zeit selektiert werden kann.
    Im Unterschied zur niedermolekularen Chemie beschäftigt sich die hoch-bzw. makromolekulare Chemie mit Verbindungen, die aus sehr vielen Elementen zusammengesetzt sind und daher eine hohe Masse besitzen. Bei der chemischen Untersuchung der Materie schlägt daher die makromolekulare Chemie die Brücke sowohl zu den Materialwissenschaften als auch zu den Makromolekülen der Biochemie. Man unterscheidet die synthetischen von den natürlichen Makromolekülen wie z.B. die Proteine und Nukleinsäuren. In jedem Fall werden viele kleine Moleküle („Monomere“) in einer chemischen Reaktion, die Polymerisation heißt, zu großen Molekülen („Polymere“) zusammengefügt. Es war Hermann Staudinger, der in den 20er Jahren die Grundlagen der makromolekularen Chemie legte. {59} Im Unterschied zu früheren Annahmen, wonach große Moleküle durch besondere Kräfte zusammengehalten werden müßten, schlug Staudinger eine Theorie vor, nach der Polymere aus langen Ketten von Molekülen bestehen, die von den auch bei niederen Molekülen üblichen Kräften verbunden werden.
     
     
3. Materie und molekulare Selbstorganisation
     
    Mit zunehmender molekularer Komplexität lassen sich Selbstorganisationsprozesse der Materie nachweisen. Für die supramolekulare Chemie und ihre technische Anwendung sind mittlerweile konservative Selbstorganisationsprozesse nahe dem thermischen Gleichgewicht von zentraler Bedeutung. {60} Beispiele in der Natur liefern Kristallisationsprozesse. Kühlt etwa eine Wolke ab, dann lagern sich viele Wassermoleküle zu kleinen Gruppen zusammen, da sich die Sauerstoff-und Wasserstoffatome benachbarter Moleküle schwach an-ziehen. Diese Gruppen gefrieren dann aufgrund derselben Wechselwirkung zu einem Kristall in einem geordneten Molekülgitter. Schließlich ordnen sich viele Kristalle im Aggregat einer Schneeflocke.
    Es stellt sich die Frage, wie die molekularen Wechselwirkungen solcher Selbstorganisationsprozesse der Materie zur Herstellung von Materialien verwendet werden können. Da gewünschte Eigenschaften von Stoffen wie z.B. optische, elektrische, magnetische oder supraleitende Effekte von ihrer molekularen Struktur abhängen, müßten passend geformte Moleküle bereitgestellt und zwischenmolekulare Kräfte bekannt sein. Für Kristalle ist bemerkenswert, daß die Gesamtenergie aller Wechselwirkungen durch eine Anordnung der Moleküle mit geringstem Raumbedarf minimiert wird. Anschaulich fügen sich daher die Moleküle in einer möglichst dichten Packung zusammen. Für die Konstruktion von Molekülkristallen werden Bausteine ausgesucht, die sich in vorhersehbarer Weise zu komplexen Ordnungen organisieren.
    Häufig verwendet die Natur Schablonen oder Matrizen zur Steuerung von komplexen Synthesen. Damit sind Moleküle gemeint, die das Zusammenfügen von molekularen Bausteinen genau lenken und ausrichten. So ist z.B. die Ribonukleinsäure, mit der genetische Informationen übermittelt werden, eine Schablone für die Proteinbiosynthese. Schablonen molekularer Selbstorganisation liegen auch bei der Herstellung großer Polyedermoleküle zugrunde, wie sie bei Polyoxometallaten auftreten. Dabei werden anorganische Grundeinheiten verwendet, die sich in wäßriger Lösung in allen Vanadium- Sauerstoffverbindungen von selber ausbilden. Geometrisch sind vor allem quadratische Pyramiden, aber auch Oktaeder möglich. Die Ecken dieser Bausteine sind von Sauerstoffatomen besetzt. Sie werden durch ein Vanadiumatom in der Mitte fixiert.
    Als Schablone für den molekularen Selbstorganisationsprozeß eines komplexen Clusters aus diesen Bausteinen können der wäßrigen Lösung kleine anionische Teilchen zugefügt werden. Als Anionen werden allgemein Ionen bezeichnet, die in wäßriger Lösung unter dem Einfluß elektrischen Stroms zur Anode wandern und somit negative Ladung tragen. Die molekularen Bausteine gruppieren sich dann in einer wohldefinierten Ordnung schalenförmig um die Anionen. Die Schale paßt sich der Größe und Gestalt der Schablone an. Die molekulare Struktur des Clusters wird also durch die Wahl der Anionen bestimmt. Unter diesen Bedingungen organisieren sich quadratische Pyramiden zu einem schalenförmigen Cluster mit einem zentralen Hohlraum, in dem die Schablone sitzt. {61}
    Solche Riesencluster können als molekulare Container benutzt werden, um in den Hohlräumen andere Chemikalien oder sogar Medikamente z.B. im menschlichen
Vom Netzwerk:

Weitere Kostenlose Bücher